

SPECTRORADIOMETER

SOFTWARE DEVELOPMENT KIT

Release 3.1.01.0

Bentham Instruments Ltd
2 Boulton Road, Reading, Berkshire, RG2 0NH

Tel: +44 (0)118 975 1355, fax: +44 (0)118 931 2971,
email: sales@bentham.co.uk

BENTHAM

Bentham Instruments Spectroradiometer Software Development Kit
Version 3.1.01.0

First printed January 1995, 1999 , this revision Jun 2011

Copyright 2006-2011 by Bentham Instruments Ltd.
All rights reserved

Purchasers of this product may copy and use the programming examples included on the
disk, and other files where indicated. Purchasers may also make one copy of the disk for
backup purposes. The software may not be copied or distributed in any other way.

Purchasers of this product may copy and use the programming examples included in this
manual. No other parts of this manual may be reproduced or transmitted in any form or by
any means, electronic, optical or mechanical, including photocopying and recording, or by any
information storage and retrieval system, without permission in writing from Bentham
Instruments Ltd.

 Spectroradiometer Software Development Kit i

 CONTENTS

INTRODUCTION .. 1

1. GETTING STARTED ... 3

1.1. INDEX OF FILES ON THE DISK ... 3
1.2. INSTALLATION ... 4
1.3. MINIMUM SYSTEM REQUIREMENTS .. 4

2. THE HARDWARE CONTROL DLL ... 5

2.1. WHAT IS A DLL .. 5
2.2. THE SYSTEM MODEL ... 5

2.2.1. List of Component types ... 8
2.2.2. Component Types Alphabetical List.. 10

2.3. COMPONENT GROUPS .. 15
2.4. DLL FUNCTIONS ... 17
2.5. HARDWARE ATTRIBUTE TOKENS .. 39
2.6. DLL ERROR CODES .. 44
2.7. CONTROLLING HARDWARE VIA THE DLL .. 45

2.7.1. M300/Mc300 and DM150/DMc150 Monochromators ... 45
2.7.2. TM300/TMc300, DTM300/DTMc300 and TTM300 Monochromators 45
2.7.3. Filter Wheel ... 46
2.7.4. SAM .. 46
2.7.5. TLS .. 47
2.7.6. MVSS .. 47
2.7.7. SOB ... 47
2.7.8. 228, 228A, 485 and 487 ADCs ... 48
2.7.9. 225, 265, 267, 277, 485,487 and 477 Amplifiers .. 48
2.7.10. System Attributes .. 50

2.8. USING THE DLL ... 51

3. TROUBLESHOOTING .. 53

3.1. WINDOWS ERRORS .. 53
3.2. HARDWARE CONTROL PROBLEMS ... 53

ii Bentham Instruments

 Spectroradiometer Software Development Kit 1

 INTRODUCTION

The Bentham Instruments Spectroradiometer Software Development Kit (SDK) is aimed at
those who wish to develop their own applications to work with Bentham Instruments light
measurement systems. The SDK centres on the use of the hardware control dynamic link
library (DLL). The DLL provides a small but powerful suite of high-level functions that allow
the developer to forget the low-level complexities of operating their hardware and concentrate
instead on data acquisition and manipulation. The DLL is built from the code used in
Bentham's own spectroradiometer control packages, meaning that it has been extensively
tried and tested in a huge variety of systems.

This manual describes the use of the SDK. It is organised as follows:

Chapter 1 outlines the contents of the SDK and gives guidelines for installation.

Chapter 2 describes the spectrometer control DLL in detail, including services that it offers
and how they are used.

Chapter 3 describes problems that you may encounter using the Spectroradiometer Control
DLL and how to solve them.

2 Bentham Instruments

 Spectroradiometer Software Development Kit 3

 1. GETTING STARTED

1.1. INDEX OF FILES ON THE DISK

\code examples \C

 \Delphi

 \Java

 \LabView

 \MATLAB

 \Python

 \VBA
 Source code examples for the above languauges.

\hardware
 system.cfg - system configuration file (where provided)
 system.atr - system configuration file (where provided)

\lib\
 benhw32_fastcall.dll - 32 bit hardware control DLL
 (Delphi _fastcall calling convention)
 benhw32_stdcall.dll - 32 bit hardware control DLL
 (Windows _stdcall calling convention)
 benhw32_cdecl.dll - 32 bit hardware control DLL
 (C/C++ _cdecl calling convention)
 ieee_32m.dll - 32 bit PC488 driver
 (4 versions included)

\lang\c
 bendll.h - C header file

dllerror.h - C error code file
 dlltoken.h - C attribute identifier file

\lang\generic
 dllerror.txt - text error code file
 dlltoken.txt - text attribute identifier file

\lang\pascal
 bendll.pas - Pascal DLL import unit
 dllerror.pas - Pascal error code file
 dlltoken.pas - Pascal attribute identifier file

\lang\vb
 bendll.bas - VB DLL function declaration module
 dllerror.bas - VB error code file
 dlltoken.bas - VB attribute identifier file

4 Bentham Instruments

1.2. INSTALLATION

Win2000/WinXP/Win7 - copy the contents of \lib bit on the SDK disk to your system directory
(typically c:\windows\system), or the directory where your application resides.

If your hardware is not PC488 controlled system then the ieee_32m.dll is a 'dummy' file but
still needs to be installed. If you have a PC488 card then the copies and ieee_32m.dll will be
the same as those on the disks accompanying your card; licensing information can be found
in the PC488 manual.
Where possible a system configuration file, \hardware\system.cfg, written specifically for your
hardware is included. This file is essential for using the spectroradiometer control DLL and
may be copied as required. Unless new hardware is added, this file should never be edited.

To use the example programs you should have installed the appropriate libraries as described
above. The example programs also expect the system configuration file system.cfg to be in
the same directory as they are launched from.

1.3. MINIMUM SYSTEM REQUIREMENTS

Intel Pentium II / 300 MHz or better
Microsoft Windows 2000 Professional (SP4) or Windows XP Professional (SP2)
128Mb RAM or better
CD-ROM or DVD-ROM Drive
SVGA or higher-resolution monitor (XGA recommended)

 Spectroradiometer Software Development Kit 5

 2. THE HARDWARE CONTROL DLL

2.1. WHAT IS A DLL

A dynamic link library (DLL) is an executable module that contains code or resources that can
be used by clients such as other applications or DLLs. When a client wishes to utilise code or
resources in a DLL, the DLL is loaded into memory and linked to the client at runtime. The
DLL does not have to be written in the same language as the client and can be easily replaced
with updated versions when necessary. For this manual a DLL will be considered as a pre-
compiled library of functions that can be called by other applications.

2.2. THE SYSTEM MODEL

In order for the DLL to be able to control a system it has to know what hardware it consists of.

The DLL achieves this by constructing a system model that mirrors the hardware
components. The system model is entirely modular, in the same way as the
spectroradiometer system. It is the system model that co-ordinates the activities of the
various pieces of hardware and allows almost any system, however large and complicated, to
be controlled by the same set of simple, high-level functions.

The system model is built from a system configuration file. This describes the
spectroradiometer in terms of what components it consists of, how the PC can communicate
with them and how they interact. System configuration files rarely need to be changed, and
where possible they are pre-written and supplied with the SDK.

Figure 1 shows a system configuration file that describes a simple TM300 based DC system.

Figure 1: Example System Configuration File

Figure 1 describes the following system:
1 USB_COMMS - USB electronics controller at vid 1240 and pid 5892
1 USB – USB mechanical controller at vid 1240 and pid 5892
1 Amp487 - DC amplifier at address 64 on the I2C bus in the electronics bin
1 ADC487 - ADC at address 29 on the I2C bus in the electronics bin
1 252 filter wheel controlled by drive 2 of the MSD
1 SAM controlled by drive 1 of the MSD
1 TM300 monochromator housing the previously described SAM and filter wheel and MSD
board

The format of the file is as follows:
 One component is described per line,
 For each line:

- The first column declares the type of the component,

- The second column gives the component an identifier,

#Demo TM300 system

USB_COMMS comms vid 1240, pid 5892

USB msd vid 1240, pid 5893

Amp487 dc_amp address 64

ADC487 adc address 72

FW252 fwheel drive 2

SAM exit_sam drive 1

TM300 mono use fwheel, use exit_sam

6 Bentham Instruments

- The third column contains any parameters (e.g. address), with multiple parameters
separated by commas,
 Anything following a '#' on a line is a comment and is ignored.

The system configuration file is the means by which the DLL knows what hardware is present
and how it is connected to the PC. It must contain one line for each PC controlled hardware
module.
The first task when writing a system configuration is to declare how the PC communicates
with any electronics in the system. Line 4 in figure 1 specifies that a USB_COMMS controller
with vid 1240 and pid 5892 is to be used (other options include a PC488 IEEE controller, a
TAS016 RS232<>IEEE converter, INES PCMCIA IEEE controller or an RS232, RS232
controller).
The next task is to declare how the PC communicates with any mechanical components in the
system. Line 5 in figure 1 specifies that a USB controller with vid 1240 and pid 5893 is to be
used (other options include a PMC, MSD or MAC which can be RS232 or IEEE).
These lines defining how the PC communicates must appear in the file before any other
system component so the DLL knows how to communicate with the hardware in the system.

The next step is to add a line describing each hardware module in turn. A good 'bottom-up'
approach is to start with each electronics module (e.g.amplifiers and ADC), then each
mechanical/stepper motor drive controlled unit (e.g. filter wheel, SAMs, SOBs, MVSSs) and
finally the monochromator.

One component is described per line. The first column is the type. This tells the DLL what
the component is, e.g. 487 amplifier, 487 ADC, PMC. The next section gives a complete list
of component types. The type is case sensitive.

The second column is an identifier by which the component can be referred to. The identifier
can contain any alphanumeric characters and the '_' (underscore) character, but the first
character must be a letter or '_'. Each identifier must be unique and cannot be any of the
system configuration keywords (i.e. a type or parameter). The identifier is case sensitive.

The third column is a list of component parameters. These provide details such as the
address of the component; the next section gives the valid parameters for each component
type. If there is more than one parameter they must be separated by commas. The
parameter list is case sensitive.

In systems with more than one electronics controller the entry for each device must specify
which controller the component is connected to. This is achieved by the use parameter.
Inserting the identifier of a controller as the value for the use parameter instructs the system
model to operate the component via that controller. For example, the configuration file for a
system with an USB_COMMS controlled 477Amp could contain:

USB_COMMS comms2 vid 1240, pid 5891

477Amp pre_amp address 104, use comms2

In systems with more than one stepper motor drive (SMD) the entry for each SMD controlled
component must specify which SMD the component is connected to. This in a similar way to
the electronics. For example, the configuration file for a system with an MSC1 controlled
MVSS could contain:

MSC1 slit_drive address 20

MVSS entrance_slit motor 1, use slit_drive

This also specifies that the MVSS is to be addressed as motor 1. When there is more than
one SMD in a system and the SMD is not specified for a component the DLL will assign a
default, but it may not be the correct one.

The use parameter also allows some components (specifically filter wheels, SAMs and
MVSSs) to be attached to the monochromator. The system model needs to know what
components are part of the monochromator so that it can correctly co-ordinate all of their
operations. This is illustrated in the final line of figure 1 which describes a TM300 that
contains a SAM and filter wheel.

 Spectroradiometer Software Development Kit 7

The use parameter is the reason for the suggested bottom-up order of adding components to
the system configuration. This is because one component cannot be used by another unless
it has been declared first.

Figure 2 is a more sophisticated example of a system configuration describing an AC system
based on a DTM300 with a filter wheel, 2 SAMs and 3 MVSSs. The number of component
types along with all of their different parameters may seem daunting, but once set up the
system configuration file should never need altering. As the DLL functions access
components via their identifiers as defined in the configuration file the only usual reason for
looking at it is to find out what these identifiers are.

Once a system configuration file has been written it is passed to the DLL using the
BI_build_system_model function. This instructs the DLL to compile a system model from the
system configuration file. The function reports its success or failure and gives the reason for
any failure to compile.

Figure 2: Example System Configuration File

#---

Example system configuration file 2

#---

Specifies CEC488 controlled system

PC488 comms address 21

Defines an MSD3 connected to COM1 rather than the IEEE bus

MSD3 mono_drive port COM1

Defines a MAC at address 20

MAC slit_drive address 20, cards 3

Defines a 277 pre-amplifier at address 28

Amp277 pre_amp address 28

Defines a 225 lock-in amplifier at address 27

Amp225 ac_amp address 27

Defines a 228A ADC at address 28

ADC228A adc address 29

Defines 3 MVSSs, all controlled by the same MAC

MVSS entrance_slit drive 1, use slit_drive

MVSS middle_slit drive 2, use slit_drive

MVSS exit_slit drive 3, use slit_drive

Defines a filter wheel controlled by card 3 of the MSD

FW252 fwheel card 3, use mono_drive

Defines a SAM controlled as SAM1 on card 1 of the MSD

SAM exit1_sam card 11, use mono_drive

Defines a SAM controlled as SAM2 on card 1 of the MSD

SAM exit2_sam card 12, use mono_drive

Defines a DTM300 containing all of the slits, SAMs and

filter wheel and driven by the MSD. Note that long lines are

OK, but cannot contain any line breaks.

DTM300 mono use fwheel, use exit1_sam, use exit2_sam,

use entrance_slit, use middle_slit, use exit_slit, use mono_drive

8 Bentham Instruments

2.2.1. List of Component types

This section gives a complete list of component types. Each type is described, along with its
parameters.

Table 1: Complete List of Component Types

Component Type Component Modelled Parameters

PC488,
CEC488

PC488 IEEE controller address 0..30

port $address

TAS016,
RS232

TAS016 RS232<>IEEE converter port COMn

USB_COMMS USB Interface pid n (5892)

vid n (1240)

MSD MSD micro-stepping drive address 0..30
port COMn
cards n

MAC MAC micro-stepping drive address 0..30
port COMn
cards n

USB USB MAC micro-stepping drive pid n (5893)
vid n (1240)

MSC1 MSC1 micro-stepping drive address 0..30
PMC PMC micr-stepping drive address 0..30

ADC228 228 ADC address 0..30
use identifier

ADC228A 228A ADC address 0..30

use identifier

ADC487 487 ADC address 72,74,76,78

use identifier

ADC485 485 ADC address 96,98,100,102

use identifier

Amp225 225 lock-in amplifier address 0..30

use identifier

Amp265 265 DC amplifier address 0..30

use identifier

Amp267 267 DC amplifier address 0..30

use identifier

Amp277 277 pre-amplifier address 0..30

use identifier

Amp487 487 DC amplifier address 64,66,68,70

use identifier

Amp485 485 lock-in amplifier address 88,90,92,94

use identifier

Amp477 477 pre-amplifier address
 104,106,108,110
use identifier

SB262 262 switch box address 0..30
SB462 462 switch box address 112..118

FW252 252 filter wheel card integer
positions 0..12

use identifier

 Spectroradiometer Software Development Kit 9

IEEEDevice

Anonymous IEEE device

address 0..30

use identifier

USBDevice Anonymous USB device address 0..238

use identifier

Motor Motorised stage motor 1..3
use identifier

MVSS_MK1 MK1 Motorised Slit resolution n
drive 1..max Drives

use identifier
MVSS_MK2 MK2 Motorised Slit drive 1..max Drives

use identifier

MVSS_MK3 MK3 Motorised Slit drive 1..max Drives

use identifier

EBox_Monitor EBox Monitor address 152
use identifier

SAM Swing Away Mirror card integer

use identifier

SOB Switch-over Box card integer

use identifier

TLS Triple Light Source card integer

use identifier

M300E M300E monochromator use identifier

selfpark 1 or 0

M300HR M300HR monochromator as M300E
M300T M300T monochromator as M300E
DM150 DM150 monochromator as M300E

TM300 TM300 monochromator use identifier
subtractive 1 or 0

DTM300 DTM300 monochromator use identifier
subtractive 1 or 0

TTM300 TTM300 monochromator use identifier
HR600 HR600 monochromator use identifier

subtractive 1 or 0

10 Bentham Instruments

2.2.2. Component Types Alphabetical List

The following is an alphabetical list of all of the component types that can be used in the
system model, along with valid parameters and any other notes.

ADC228 add a 228 ADC to the system model

 Parameters address the address of the 228
 use specify which controller to use

ADC228A add a 228A ADC to the system model

 Parameters address the address of the 228A
 use specify which controller to use

ADC485 add a 485 ADC to the system model

 Parameters address the address of the 485ADC
 use specify which controller to use

ADC487 add a 487 ADC to the system model

 Parameters address the address of the 487ADC
 use specify which controller to use

Amp225 add a 225 AC amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp265 add a 265 DC amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp267 add a 267 DC amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp277 add a 277 pre-amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp477 add a 477 pre-amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp485 add a 485 AC amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

Amp487 add a 487 DC amplifier to the system model

 Parameters address the address of the amplifier
 use specify which controller to use

 Spectroradiometer Software Development Kit 11

CEC488 add a CEC488 (or compatible) interface card

 Parameters address the IEEE address of the card
 port the memory address of the card (only required if
 card not at default address, e.g. INES
 PCMCIA IEEE card)

DM150 add a DM150 monochromator to the system model

 Parameters use add a slave component to the DM150 or specify
 which SMD to use
 selfpark a value of 1 indicates self-park capability

 Notes Valid slave components are filter wheels (5), SAMs (10) and MVSSs (5).
 The selfpark parameter is only used if the DM150 is PMC or MSC1

controlled.

DTM300 add a DTM300 monochromator to the system model

 Parameters use adds a slave component to the DTM300 or specify
 which SMD to use

 Notes Valid slave components are filters wheels (5), SAMs (10) and MVSSs (5).

EBox_Monitor add an ebox monitor to the system model

 Parameters address the address of the ebox monitor
 use specify which controller to use

FW252 define a 252 filter wheel for use in a monochromator

 Parameters use the MAC, MSD or PMC that the filter wheel is
 connected to
 card which MSD card the filter wheel is connected to
 drive which MAC drive the filter wheel is connected to
 positions the number of filter positions (default is 6)
 selfpark a value of 1 indicates self-park capability

 Notes The selfpark parameter is only used if it is PMC or MSC1 controlled.
 The positions parameter is optional; the default (6) is used if omitted.

HR600 add a HR600 monochromator to the system model

 Parameters use add a slave components to the HR600 or specify
 which SMD to use

 Notes Valid slave components are filters wheels (5), SAMs (10) and MVSSs (5).

IEEEDevice add an anonymous IEEE Device

 Parameters address the address of the device
 use specify which controller to use

M300E add an M300E monochromator to the system model

 Parameters use add a slave component to the M300E or specify
 which SMD to use
 selfpark a value of 1 indicates self-park capability

 Notes Valid slave components are filter wheels (5), SAMs (10) and MVSSs(5).
 The selfpark parameter is only used if the M300E is PMC or MSC1
 controlled.

M300HR add an M300HR monochromator to the system model

 Parameters use add a slave component to the M300HR or specify
 which SMD to use
 selfpark a value of 1 indicates self-park capability

 Notes Valid slave components are filter wheels (5), SAMs (10) and MVSSs(5).

12 Bentham Instruments

 The selfpark parameter is only used if the M300HR is PMC or MSC1
 controlled.

M300T add an M300T monochromator to the system model

 Parameters use add a slave component to the M300T or specify
 which SMD to use
 selfpark a value of 1 indicates self-park capability

 Notes Valid slave components are filter wheels (5), SAMs (10) and MVSSs(5).
 The selfpark parameter is only used if the M300T is PMC or MSC1
 controlled.

MAC add a MAC to the system model

 Parameters address address of the MAC
 cards number of motors the MAC can control

MOTOR add a motorised stage to the system model

 Parameters use which SMD the motor is driven by
 drive which motor/drive the SMD refers to this as

 resolution the number of steps per unit (e.g. steps/mm, steps/)

MSC1 add an MSC1 to the system model

 Parameters address address of the MSC1

MSD add an MSD to the system model

 Parameters address address of the MSD (when IEEE controlled)
 port serial port the MSD is connected to (when under
 direct PC RS232 control)
 cards number of controller cards in the MSD

 Notes The address and port parameters are mutually exclusive; the MSD is either
 IEEE or RS232 controlled.

MVSS-MK1..Mk3 define a motorised slit for use in a monochromator

 Parameters use - SMD which the slit is connected to
 motor - which motor/drive of the SMD the MVSS is
 connected to

 Notes A motor drive must be specified with the use parameter. For a PMC
 controlled MVSS the motor parameter can be 1 or 2. For an MSC1
 controlled MVSS it can be 1, 2 or 3. For MAC and IMAC controllers the
 motor parameter can be any of the available drives up to the max number of
 drives.

PC488 add a PC488 (or compatible) interface card

 Parameters address the IEEE address of the card
 port the memory address of the card (only required if
 card not at default address, e.g. INES
 PCMCIA IEEE card)

PMC adds a PMC to the system model

 Parameters address address of the PMC

RS232 communicate with hardware via RS232

 Parameters port serial port to be used (e.g. COM1)

 Spectroradiometer Software Development Kit 13

SAM add a SAM to the system model or define it for use in a monochromator

 Parameters use MAC, IMAC, MSD or PMC that the SAM is
 connected to
 card which card the SAM is connected to (MSD control)
 drive which drive the SAM is connected to (MAC control)

 Notes For MACs, and MSDs that can control two SAMs or SOBs per card, the
 drive/card parameter specifies the drive/card number and SAM number.
 For example, drive 21 refers to SAM1 on drive 2 of a MAC; the first digit is
 the card, the second the SAM. For IMACs and MSDs that are only capable
 of operating one SAM/SOB per card, the card parameter is a single digit
 specifying the card number.

SB262 add a 262 to the system model

 Parameters address - address of the 262
 use specify which controller to use

SB462 add a 462 to the system model

 Parameters address address of the 462
 use specify which controller to use

SOB add a SOB to the system model or define it for use in a monochromator

 Parameters use MAC, IMAC, MSD or PMC that controls the SOB
 card which card controls the SOB (MSD)
 drive which drive controls the SOB (MAC)

 Notes For MACs (or MSDs that can control two SAMs or SOBs per card) the drive
 (card) parameter specifies the drive (card) number and SOB number. For example,
 drive 21 refers to SOB1 on drive 2 of a MAC; the first digit is the drive, the second
 the SOB. For MSDs that are only capable of operating one SAM/SOB per card, the
 card parameter is a single digit specifying the card number.

TAS016 communicate with hardware via a TAS016

 Parameters port serial port that the TAS016 is connected to
 (e.g. COM1)

TLS add a Triple Light source to the system model

 Parameters use SMD that the SAM is connected to
 card which card the SAM is connected to (MSD control)
 drive which drive the SAM is connected to (MAC control)

TM300 add a TM300 monochromator to the system model

 Parameters use add a slave components to the TM300 or specify
 which SMD to use

 Notes Valid slave components are filters wheels (5), SAMs (10) and MVSSs (5).

TTM300 add a TTM300 monochromator to the system model

 Parameters use add a slave components to the TTM300 or specify
 which SMD to use

 Notes Valid slave components are filters wheels (5), SAMs (10) and MVSSs (5).

14 Bentham Instruments

USB add USB mechanical controller to the system model

 Parameters pid the product id of the USB hid device (default 5893)
 vid the vendor id of the USB hid device (default 1240)

USBDevice add an anonymous USB device to the system model

 Parameters address the address of the device
 use specify which controller to use

USB_COMMS add USB electronics controller to the system model

 Parameters pid the product id of the USB hid device (default 5892)
 vid the vendor id of the USB hid device (default 1240)

 Spectroradiometer Software Development Kit 15

2.3. COMPONENT GROUPS

Simple spectroradiometer systems contain the same basic set of components: a
monochromator, a stepper motor drive, an amplifier, possibly a pre-amplifier and an ADC.
Measurements are made by repeatedly selecting a wavelength and taking a reading. In this
situation all of the components are used together.

More sophisticated systems are possible. For example, consider a system designed to take
both AC and DC measurements, possibly during the same scan. This time measurements
would be made by selecting a wavelength and taking a reading using just one of the sets of
detection electronics. In this situation the system model needs to know what set of
components it should be using to perform the required operation.

To allow this the system model includes the concept of component groups. A component
group is a set of components that are used together to perform operations. At any given time

there is one active group; this is the component group that is used for all operations, such as
selecting a wavelength or taking a measurement. A component group is a sub-set of the
system model.

New component groups are added with the BI_build_group function. This constructs a new,
empty component group and returns its sequence number. The first group is group 1, the
next group created is group 2, the next group 3, and so on. There can be up to 10 component
groups. When the system model is built, the DLL constructs a single empty default component
group (group 1).

Existing component groups can be edited by using the BI_group_add and BI_group_remove
functions to add and remove components to and from groups. For each function the
component is referred to by its identifier as set in the system configuration file and the group
by its sequence number.

The function BI_use_group sets the active group. All of the hardware operation functions
(BI_initialise, BI_close_shutter, BI_park, BI_zero_calibration, BI_select_wavelength,
BI_autorange and BI_measurement) work with the active group. Obviously for simple
systems the active group will always be the default group (group 1).

Figure 3: Example System Configuration Containing AC and DC Detectors

Figure 3 shows a system configuration for a TM300 based system with both AC and DC
detection electronics. The input to the ADC (from the 267 or 225) is selected by the SOB,

#---

Example system configuration

#---

PC488 comms address 21

MAC smd address 30, cards 2

Note DC and AC detection electronics

Amp267 dc_amp address 26

Amp277 pre_amp address 28

Amp225 ac_amp address 25

ADC228A adc address 29

SOB to select DC or AC input to ADC

SOB adc_input drive 11

FW252 fwheel drive 2

TM300 mono use fwheel

16 Bentham Instruments

which is controlled by the MAC. In order to make AC and DC measurements two groups, one
containing the monochromator, MSD, SOB, ADC and 277 and 225, and one containing the
monochromator, MSD, SOB, ADC and 267, must be created. This can be achieved using the
following sequence of DLL function calls:

i = BI_build_group()

BI_group_add("mono", i)

BI_group_add("smd", i)

BI_group_add("adc_input", i)

BI_group_add("adc", i)

BI_group_add("pre_amp", i)

BI_group_add("ac_amp", i)

i = BI_build_group()

BI_group_add("mono", i)

BI_group_add("smd", i)

BI_group_add("adc_input", i)

BI_group_add("adc", i)

BI_group_add("dc_amp", i)

Assuming that when the SOB is relaxed/off the ADC is reading from the 225, the following
sequence of commands is a very naive example of a simple measurement scan:

for wl = start_wl to stop_wl by increment

 begin

 {Measurement with group 1 (AC)}

 BI_use_group(1)

 BI_set("adc_input", SOBState, 0, 0)

 BI_select_wavelength(wl, settle_time)

 wait(settle_time)

 BI_autorange()

 BI_measurement(reading)

 {Measurement with group 2 (DC)}

 BI_use_group(2)

 BI_set("adc_input", SOBState, 0, 1)

 BI_select_wavelength(wl, settle_time)

 wait(settle_time)

 BI_autorange()

 BI_measurement(reading)

 end

BI_zero_calibration needs to access the monochromator in order to correctly measure the
zero offset and dark current for each state that the system will be in over the specified
wavelength range. BI_measurement also needs to access the monochromator in order to
retrieve the zero calibration values for the current wavelength. This means that if
measurements performed using a group are to be zero calibrated the group must include the
monochromator.

While the DLL will not create default component groups, BI_save_setup records which
components are in which groups in the system attributes file and BI_load_setup deletes any
existing component groups and builds new ones from the information in the system attribute
file.

 Spectroradiometer Software Development Kit 17

2.4. DLL FUNCTIONS

This section gives a complete description of each function in the spectroradiometer control
DLL. The functions are listed in alphabetical order. C, Pascal and Visual Basic prototypes are
given for each function. For those using different languages, the parameter types are as
follows:

C Pascal Visual Basic Description

Table 1: DLL Function Parameter Types

For Visual Basic the symbol has been used as a continuation character. This indicates that
a line of code has been split in the text but should be entered on one line in Visual Basic.

int integer ByVal .. As Integer 16 bit signed integer
unsigned int word ByVal .. As Integer 16 bit unsigned integer
double double ByVal .. As Double 64 bit real number
char far * Pchar ByVal .. As String pointer to a null terminated

string
int far * var int As Integer pointer to a 16 bit signed

integer
unsigned int far * var word As Integer pointer to a 16 bit unsigned

value
long far * var longint As Long pointer to a 32 bit signed

integer

18 Bentham Instruments

BI_automeasure

Syntax BI_automeasure(reading)

Description This function auto-ranges the amplifier(s) in the active group and returns the
reading at the current wavelength. It takes the ADC offset and dark current
(previously obtained by BI_zero_calibration) into account

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters reading - set to the reading at the current wavelength (if call is successful)

 C int far pascal BI_automeasure(double far *reading);

 Pascal function BI_ automeasure (var reading : double) : integer;

 Visual Basic Function BI_ automeasure (reading As Double) As Integer

BI_autorange

Syntax BI_autorange

Description This function auto-ranges the amplifier(s) in the active group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_autorange(void);

 Pascal function BI_autorange : integer;

 Visual Basic Function BI_autorange() As Integer

BI_build_group

Syntax BI_build_group

Description This function constructs a new, empty component group. The DLL allows up
to 10 component groups.

Return value If the function was successful it returns the group number, otherwise it returns
BI_error.

Parameters None

 C int far pascal BI_build_group(void);

 Pascal function BI_build_group: integer;

 Visual Basic Function BI_build_group() As Integer

 Spectroradiometer Software Development Kit 19

BI_build_system_model

Syntax BI_build_system_model(filename, error_report)

Description This function instructs the DLL to build a system model from a specified
system configuration file. This must be done before the DLL can perform any
hardware control functions. The SDK is supplied with a customised system
configuration file (system.cfg).

 This function must succeed before any other DLL function is called. If there
is any error the function reports it via BI_report_error.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters filename - the path name of the system configuration file
 error_report - contains error report if function failed (256 characters

maximum)

 C int far pascal BI_build_system_model(char far *filename,
 char far *error_report);

 Pascal function BI_build_system_model(filename: Pchar;
 error_report : Pchar) : integer;

 Visual Basic Function BI_build_system_model(ByVal filename As String,
 ByVal error_report As String) As Integer

Notes In Visual Basic error_report must be declared as a fixed-length string, ie

 Dim error_report As String * 256

BI_camera_measurement

 Syntax BI_camera_measurement(id, wls, readings)

 Description This function instructs the DLL to take a camera measurement using the
camera defined by the id string. Two arrays are passed in, the first of which
will be filled with the camera wavelengths, and the second the intensity
readings. The camera measurement itself is performed by the external dll
defined in the system configuration file for the relevant camera.

 Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

 Parameters id - component identifier as set in the system configuration file
 wls - pointer to an array of doubles
 readings - pointer to an array of doubles

 C int far pascal BI_camera_measurement (char far *id
 double far *wls
 double far *reading);

 Pascal function BI_ camera_measurement (id: pchar; wls: pdouble; readings:
pdouble): integer;

 Visual Basic Function BI_ camera_measurement (ByVal id As String, wls As Double,
readings As Double) As Integer

BI_close

 Syntax BI_close

 Description This function instructs the DLL to destroy the system model and prepare for
unloading.

20 Bentham Instruments

 Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

 Parameters None

 C int far pascal BI_close(void);

 Pascal function BI_close: integer;

 Visual Basic Function BI_close () As Integer

BI_close_shutter

Syntax BI_close_shutter

Description This function instructs the DLL to send the filter wheel in the monochromator
of the active group to its shutter position.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_close_shutter(void);

 Pascal function BI_close_shutter : integer;

 Visual Basic Function BI_close_shutter() As Integer

 Spectroradiometer Software Development Kit 21

BI_component_select_wl

Syntax BI_component_select_wl(id, wavelength, delay)

Description This function sends the specified component to the specified wavelength and
recommends a settle delay time before any readings are taken. It does not
perform the delay itself.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters id - component identifier as set in the system configuration file
 wavelength - wavelength to go to (nm)
 delay - recommended delay (ms) before taking readings

 C int far pascal BI_component_select_wl (char far *id,double wavelength,
 long far*delay);

 Pascal function BI_component_select_wl (id: Pchar; wavelength: double;
 var delay: longint) : integer;

 Visual Basic Function BI_component_select_wl (ByVal id As String,
 ByVal wavelength As Double, delay As Long) As Integer

BI_delete_group

Syntax BI_delete_group(n)

Description This function deletes the specified group from the system model

Return value The return value indicates either the result of the call:
 BI_error - failure
 Or the number of groups remaining after the deletion.

Parameters n - group number to be deleted

 C int far pascal BI_delete_group(int token)

 Pascal function BI_delete_group (n : integer;) : integer;

 Visual Basic Function BI_delete_group (ByVal n As Integer) As Integer

22 Bentham Instruments

BI_get

Syntax BI_get(id, token, index, value)

Description This function returns the value of the specified component attribute.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_invalid_token - invalid token
 BI_invalid_component - the component does not exist in this system
 BI_invalid_attribute - the attribute is not accessible in this system

Parameters id - component identifier as set in the system configuration file
 token - the token for attribute to be retrieved
 index - for accessing indexed attributes and setups
 value - set to the value of the attribute (if call successful)

 C int far pascal BI_get(char far *id
 int token,
 int index
 double far *value);

 Pascal function BI_get(id : Pchar;
 token : integer;
 index : integer;
 var value : double) : integer;

 Visual Basic Function BI_get(ByVal id As String, ByVal token As Integer,
 ByVal index As Integer, value As Double) As Integer

BI_get_c_group

Syntax BI_get_c_group (group)

Description This function returns the current group number

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group - set to the current group index (if call is successful)

 C int far pascal BI_get_c_group (int far * group);

 Pascal function BI_get_c_group (var group: integer) : integer;

 Visual Basic Function BI_get_c_group (group As integer) As Integer

 Spectroradiometer Software Development Kit 23

BI_get_component_list

Syntax BI_get_component_list (list)

Description This function returns a list of all components in the system model.

 NOTE : this does not return components contained within monochromators,
to retrieve this information run BI_get_mono_items on all monochromators in
the system.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters list - a comma-delimited list of the identifiers of the components in the system
model

 C int far pascal BI_get_component_list (char far *list);

 Pascal function BI_get_component_list (list:pchar) : integer;

 Visual Basic Function BI_get_component_list (ByVal list As String) As Integer

 Notes In Visual Basic description must be declared as a fixed-length string

BI_get_group

Syntax BI_get_group(group, description)

Description This function returns a list of the identifiers of all of the components in the
specified group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group - the number of the group
 description - a comma-delimited list of the identifiers of the components in

the group

 C int far pascal BI_get_group(int group,
 char far *description);

 Pascal function BI_get_group(group : integer;
 description : Pchar) : integer;

 Visual Basic Function BI_get_group(ByVal group As Integer, ByVal description As String
) As Integer

Notes In Visual Basic description must be declared as a fixed-length string

24 Bentham Instruments

BI_get_hardware_type

Syntax BI_get_hardware_type (id, hardware_type)

Description This function returns the hardware type of the specified component

 NOTE : The hardware_type codes can be found in the dlltokens file.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters id: component identifier as set in the system configuration file
 hardware_type: an integer token indicating the hardware type

 C int far pascal BI_get_hardware_type(char far*id, int far* hardware_type);

 Pascal function BI_get_hardware_type(id: pchar; hardware_type : pinteger): integer;

 Visual Basic Function BI_get_hardware_type(ByVal id As String,
 ByVal hardware_type As Integer) As Integer

BI_get_max_bw

Syntax BI_get_max_bw (group,start_wl,stop_wl,bandwidth)

Description This function returns the maximum bandwidth that the slits may be set to
across the given wavelength range

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group - group number currently in use
 start_wl - the start wavelength

stop_wl - the stop wavelength
bandwidth - the return value of maximum bandwidth across the wavelength
range

 C int far pascal BI_get_max_bw(int group, double start_wl, double stop_wl,
double far* bandwidth);

 Pascal BI_get_max_bw(group: integer; start_wl,stop_wl : double; var bandwidth :
double):integer;

 Visual Basic Function BI_get_max_bw(ByVal group As Integer,
 ByVal start_wl As Double,
 ByVal stop_wl As Double,
 ByVal bandwidth As Double) As Integer

 Spectroradiometer Software Development Kit 25

BI_get_min_step

Syntax BI_get_min_step (group,start_wl,stop_wl,min_step)

Description This function returns the minimum step that the monochromator is capable of,
given the wavelength range and grating used

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group - group number currently in use
 start_wl - the start wavelength

stop_wl - the stop wavelength
min_step - the return value of min_step across the wavelength range (in nm)

 C int far pascal BI_get_min_step(int group, double start_wl, double stop_wl,
double far* min_step);

 Pascal BI_get_min_step(group: integer; start_wl,stop_wl : double; var min_step :
double):integer;

 Visual Basic Function BI_get_min_step(ByVal group As Integer,
 ByVal start_wl As Double,
 ByVal stop_wl As Double,
 ByVal min_step As Double) As Integer

BI_get_mono_items

Syntax BI_get_mono_items (id, list)

Description This function returns a list of all components contained within the specified
monochromator

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters id: component identifier as set in the system configuration file
 list - a comma-delimited list of the identifiers of the components in the

monochromator

 C int far pascal BI_get_mono_items(char far*id char far*list);

 Pascal function BI_get_mono_items (id: pchar; list: pchar): integer;

 Visual Basic Function BI_get_mono_items(ByVal id As String,
 ByVal list As String) As Integer

Notes In Visual Basic description must be declared as a fixed-length string

BI_get_n_groups

Syntax BI_get_n_groups(n)

Description This function returns the number of groups in the system model

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters n - number of groups

 C int far pascal BI_get_n_groups(int far* n);

 Pascal function BI_get_n_groups(var n: integer) : integer;

 Visual Basic Function BI_get_n_groups(ByVal n As Integer) As Integer

26 Bentham Instruments

BI_get_no_of_dark_currents

Syntax BI_get_no_of_dark_currents (num)

Description This function returns the number of dark currents taken during the last zero
calibrate

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters num: the number of dark currents taken during the last zero calibrate for the
current group

 C int far pascal BI_get_no_of_dark_currents (int far* num);

 Pascal function BI_get_no_of_dark_currents (var num: integer): integer;

 Visual Basic Function BI_get_no_of_dark_currents (ByVal num As Integer) As Integer

BI_get_str

Syntax BI_get_str(id, token, index, s)

Description This function returns the value of the specified component attribute, where the
value is a string

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_invalid_token - invalid token
 BI_invalid_component - the component does not exist in this system
 BI_invalid_attribute - the attribute is not accessible in this system

Parameters id - component identifier as set in the system configuration file
 token - the token for attribute to be retrieved
 index - for accessing indexed attributes and setups
 s - set to the string of the attribute (if call successful)

 C int far pascal BI_get(char far *id
 int token,
 int index
 char far *s);

 Pascal function BI_get(id : Pchar;
 token : integer;
 index : integer;
 s : Pchar) : integer;

 Visual Basic Function BI_get(ByVal id As String, ByVal token As Integer,
 ByVal index As Integer, n As String) As Integer

 Spectroradiometer Software Development Kit 27

BI_get_zero_calibration_info

Syntax BI_get_zero_calibration_info (wavelength,darkcurrent,adc_offset)

Description This function returns lists of wavelengths, dark currents and adc_offsets of all
points from the last zero calibrate on the current group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters wavelength: pointer to an array of doubles that the function fills with the
wavelengths of zero calibrations

 darkcurrent: pointer to an array of doubles that the function fills with the dark
currents from zero calibration points

 adc_offset: pointer to an array of doubles that the function fills with the adc
offsets from zero calibration points

 C int far pascal BI_get_zero_calibration_info (double far*wavelength,
 double far* darkcurrent,
 double far* adc_offset);

 Pascal function BI_get_zero_calibration_info (wavelength: pdouble
 darkcurrent: pdouble
 adc_offset: pdouble): integer;

 Visual Basic Function BI_get_zero_calibration_info (ByVal wavelength As Double,
 ByVal darkcurrent As Double

 ByVal adc_offset As Double) As Integer

BI_group_add

Syntax BI_group_add(id, group)

Description This function adds a component to the specified group. If the group already
contains a component of the same type it is replaced by the new one.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters id - component identifier as set in the system configuration file
 group - number of the group to add the component to

 C int far pascal BI_group_add(char far*id, integer group);

 Pascal function BI_group_add(id: Pchar; group: integer) : integer;

Visual Basic Function BI_group_add(ByVal id As String, ByVal group As Integer) As
Integer

28 Bentham Instruments

BI_group_remove

Syntax BI_group_remove(id, group)

Description This function removes a component from the specified group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters id - component identifier as set in the system configuration file
 group - number of the group to remove the component from

 C int far pascal BI_group_remove(char far*id, int group);

 Pascal function BI_group_remove(id: Pchar; group: integer) : integer;

 Visual Basic Function BI_group_remove(ByVal id As String, ByVal group As Integer)
 As Integer

BI_initialise

Syntax BI_initialise

Description This function initialises the active group as follows:

 MSD - set-up to operate monochromator
 SAMs - sent to initial position
 265 - set to start range
 267 - set to start gain and channel for the current set-up
 277 - set to start gain and channel for the current set-up
 225 - set to start gain, channel, phase variable and quadrant, frequency mode and

time constant for the current set-up

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_initialise(void);

 Pascal function BI_initialise(): integer;

 Visual Basic Function BI_initialise() As Integer

NOTE : This function must be successfully called before the DLL performs any other
hardware control functions.

BI_load_setup

Syntax BI_load_setup(filename)

Description This function sets up the DLL system model from a specified system attribute
file (created using BI_save_setup). The SDK is supplied with an example
system attribute file (system.atr).

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters filename - the path name of the system attribute file

 C int far pascal BI_load_setup(char far *filename);

 Pascal function BI_load_setup(filename : Pchar) : integer;

 Visual Basic Function BI_load_setup(ByVal filename As String) As Integer

 Spectroradiometer Software Development Kit 29

BI_measurement

Syntax BI_measurement(reading)

Description Using the active group, this function returns the reading at the current
wavelength. It takes the ADC offset and dark current (previously obtained by
BI_zero_calibration) into account.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters reading - set to the reading at the current wavelength (if call is successful)

 C int far pascal BI_measurement(double far *reading);

 Pascal function BI_measurement(var reading : double) : integer;

 Visual Basic Function BI_measurement(reading As Double) As Integer

BI_multi_automeasure

Syntax BI_multi_automeasure(reading)

Description This function auto-ranges the amplifier(s) in each group and returns an array
of readings at the current wavelength (one for each group). It takes the ADC
offset and dark current (previously obtained by BI_multi_zero_calibration) into
account

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters reading - set to the reading of the first group at the current wavelength (if call
is successful). The reading for subsequent groups is retrieved by
incrementing the pointer.

 C int far pascal BI_automeasure(double far* reading);

 Pascal function BI_ automeasure (reading : pdouble) : integer;

 Visual Basic Function BI_ automeasure (reading As Double) As Integer

BI_multi_autorange

Syntax BI_multi_autorange

Description This function auto-ranges the amplifier(s) in all groups in the system.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_multi_autorange (void);

 Pascal function BI_multi_autorange: integer;

 Visual Basic Function BI_multi_autorange () As Integer

30 Bentham Instruments

BI_multi_get_no_of_dark_currents

Syntax BI_multi_get_no_of_dark_currents (group, num)

Description This function returns the number of dark currents taken during the last zero
calibrate

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group- number of the group to get the number of dark currents from
 num: the number of dark currents taken during the last zero calibrate for the

specified group

 C int far pascal BI_multi_get_no_of_dark_currents (int group,int far* num);

 Pascal function BI_multi_get_no_of_dark_currents (group : integer;
 var num: integer): integer;

 Visual Basic Function BI_multi_get_no_of_dark_currents (ByVal group As Integer
 ByVal num As Integer) As Integer

BI_multi_get_zero_calibration_info

Syntax BI_multi_get_zero_calibration_info (group, wavelength, darkcurrent,
 adc_offset)

Description This function returns lists of wavelengths, dark currents and adc_offsets of all
points from the last zero calibrate on the specified group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group- number of the group to get the zero calibration info from
 wavelength: pointer to an array of doubles that the function fills with the

wavelengths of zero calibrations
 darkcurrent: pointer to an array of doubles that the function fills with the dark

currents from zero calibration points
 adc_offset: pointer to an array of doubles that the function fills with the adc

offsets from zero calibration points

 C int far pascal BI_multi_get_zero_calibration_info (int: group,
 double far*wavelength,
 double far* darkcurrent,
 double far* adc_offset);

 Pascal function BI_multi_get_zero_calibration_info (group : integer;
 wavelength: pdouble
 darkcurrent: pdouble
 adc_offset: pdouble): integer;

 Visual Basic Function BI_multi_get_zero_calibration_info (ByVal group As Integer
 ByVal wavelength As Double,
 ByVal darkcurrent As Double

 ByVal adc_offset As Double) As Integer

 Spectroradiometer Software Development Kit 31

BI_multi_initialise

Syntax BI_multi_initialise

Description This function initialises all group as follows:

 MSD - set-up to operate monochromator
 SAMs - sent to initial position
 265 - set to start range
 267 - set to start gain and channel for the current set-up
 277 - set to start gain and channel for the current set-up
 225 - set to start gain, channel, phase variable and quadrant, frequency mode and

time constant for the current set-up

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_multi_initialise(void);

 Pascal function BI_multi_initialise(): integer;

 Visual Basic Function BI_multi_initialise() As Integer

NOTE : This function must be successfully called before the DLL performs any other
multi group hardware control functions.

BI_multi_measurement

Syntax BI_multi_measurement (reading)

Description This function returns the readings at the current wavelength for all groups. It
takes the ADC offset and dark current (previously obtained by
BI_multi_zero_calibration) into account.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters reading – pointer to an array of doubles in which the function stores the
readings at the current wavelength (if call is successful)

 C int far pascal BI_multi_measurement (double far *reading);

 Pascal function BI_multi_measurement (reading : pdouble) : integer;

 Visual Basic Function BI_multi_measurement (reading As Double) As Integer

32 Bentham Instruments

BI_multi_park

Syntax BI_multi_park

Description This function parks the monochromator of all the groups if possible (e.g. a
TM300, DTM300 or M300/DM150 capable of self-parking) and leaves the
DLL and monochromator in a well-defined state. Where a monochromator
can be parked this function must be called before BI_zero_calibration and
BI_select_wavelength are used. BI_multi_park only needs to be called once;
after this the DLL records the state of the monochromator(s).

 Parking a monochromator parks all turrets, the filter wheel and all MVSSs.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_multi_park(void);

 Pascal function BI_multi_park : integer;

 Visual Basic Function BI_multi_park() As Integer

BI_multi_select_wavelength

Syntax BI_multi_select_wavelength (wavelength, delay)

Description This function performs the following operations with all groups in the system:

 sends the monochromator to the specified wavelength,
 selects the filter for the specified wavelength,
 positions all SAMs according to the specified wavelength,
 sets all MVSSs according to the specified wavelength
 configures all amplifiers for the specified wavelength

and recommends a settle delay time before any readings are taken. It does
not perform the delay itself.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters wavelength - wavelength to go to (nm)
 delay - recommended delay (ms) before taking readings

 C int far pascal BI_multi_select_wavelength(double wavelength,
 long far *delay);

 Pascal function BI_multi_select_wavelength(wavelength : double;
 var delay : longint) : integer;

 Visual Basic Function BI_multi_select_wavelength(ByVal wavelength As Double,
 delay As Long) As Integer

 Spectroradiometer Software Development Kit 33

BI_multi_zero_calibration

Syntax BI_multi_zero_calibration (start_wavelength, stop_wavelength)

Description This function performs ADC offset and system dark current measurements
for all group. The DLL records the values and uses them when calculating
readings in BI_multi_measurement. To ensure accurate readings
BI_multi_zero_calibration should be called before BI_multi_measurement is
used; once before a wavelength range scan is normally sufficient.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters start_wavelength – wavelength to zero calibrate from.
 stop_wavelength – wavelength to zero calibrate to.

 C int far pascal BI_multi_zero_calibration (double start_wavelength,
 double stop_wavelength);

 Pascal function BI_multi_zero_calibration (start_wavelength: double;
 stop_wavelength: double) : integer;

 Visual Basic Function BI_multi_zero_calibration (ByVal start_wavelength As Double,
 ByVal stop_wavelength As Double) As Integer

BI_park

Syntax BI_park

Description This function parks the monochromator of the active group if possible (e.g. a
TM300, DTM300 or M300/DM150 capable of self-parking) and leaves the
DLL and monochromator in a well-defined state. Where a monochromator
can be parked this function must be called before BI_zero_calibration and
BI_select_wavelength are used. BI_park only needs to be called once; after
this the DLL records the state of the monochromator.

 Parking the monochromator parks all turrets, the filter wheel and all MVSSs.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters None

 C int far pascal BI_park(void);

 Pascal function BI_park : integer;

 Visual Basic Function BI_park() As Integer

34 Bentham Instruments

BI_read

Syntax BI_read(message, buffer_size, chars_read, id)

Description This function reads message from the device at the specified IEEE address.
It is intended to be used for communicating with devices that are not
controlled by any other DLL functions (e.g. non-standard or third party
hardware).

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters message - a pointer to a buffer for storing any message from the device
 buffer_size - the maximum number of characters to read
 chars_read - the number of characters actually read
 id - component identifier as set in the system configuration file

 C int far pascal BI_read(char far *message,
 word buffer_size,
 word far *chars_read,
 char far* id);

 Pascal function BI_read(message : pchar;
 buffer_size : word;
 var chars_read : word;
 id : pchar) : integer;

 Visual Basic Function BI_read(ByVal message As String, ByVal buffer_size As Integer,
 chars_read As Integer, ByVal id As String) As Integer

BI_report_error

Syntax BI_report_error

Description This function returns an error code corresponding to the last hardware error
encountered. Calling this function resets the error code in the DLL.

Return value Indicates the last hardware error encountered.

Parameters None

 C int far pascal BI_report_error(void);

 Pascal function BI_report_error : integer;

 Visual Basic Function BI_report_error() As Integer

BI_save_setup

Syntax BI_save_setup(filename)

Description This function creates a system attribute file for the current state of the DLL
system model. This file can be reloaded with BI_load_setup.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters filename - the path name of the set up file

 C int far pascal BI_save_setup(char far *filename);

 Pascal function BI_save_setup(filename : Pchar) : integer;

 Visual Basic Function BI_save_setup(ByVal filename As String) As Integer

 Spectroradiometer Software Development Kit 35

BI_select_wavelength

Syntax BI_select_wavelength(wavelength, delay)

Description Using the active group, this function performs the following operations:

 sends the monochromator to the specified wavelength,
 selects the filter for the specified wavelength,
 positions all SAMs according to the specified wavelength,
 sets all MVSSs according to the specified wavelength
 configures all amplifiers for the specified wavelength

and recommends a settle delay time before any readings are taken. It does
not perform the delay itself.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters wavelength - wavelength to go to (nm)
 delay - recommended delay (ms) before taking readings

 C int far pascal BI_select_wavelength(double wavelength,
 long far *delay);

 Pascal function BI_select_wavelength(wavelength : double;
 var delay : longint) : integer;

 Visual Basic Function BI_select_wavelength(ByVal wavelength As Double,
 delay As Long) As Integer

BI_send

 Syntax BI_send(message, id)

 Description This function sends a character string to the device at the specified IEEE
address. It is intended to be used for communicating with devices that are
not controlled by any other DLL functions (e.g. non-standard or third party

hardware). It should not be used to communicate with devices that the DLL
controls.

 Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

 Parameters message - a pointer to the string to be sent to the device
 id - component identifier as set in the system configuration file

 C int far pascal BI_send(char far *message, char far* id);

 Pascal function BI_send(message: pchar; id: pchar): integer;

 Visual Basic Function BI_send(ByVal message As String, ByVal id As String) As Integer

36 Bentham Instruments

BI_set

Syntax BI_set(id, token, index, value)

Description This function sets the value of the specified component attribute.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_invalid_token - invalid token
 BI_invalid_component - the component does not exist in this system
 BI_invalid_attribute - the attribute is not accessible in this system

Parameters id - component identifier as set in the system configuration file
 token - the token for attribute to be set
 index - for accessing indexed attributes and setups
 value - the new attribute value

 C int far pascal BI_set(char far*id, int token, int index, double value);

 Pascal function BI_set(id: Pchar;token: integer; index: integer;
 value: double): integer;

 Visual Basic Function BI_set(ByVal id As String, ByVal token As Integer,
 ByVal index As Integer, ByVal value As Double) As Integer

Notes Using BI_set never triggers a hardware settle delay. If an attribute is being
changed that causes some hardware operation to occur is the responsibility of
the client to ensure that any required settle delay is used.

BI_set_str

Syntax BI_set_str(id, token, index, s)

Description This function sets the value of the specified component attribute, where value
is a string

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_invalid_token - invalid token
 BI_invalid_component - the component does not exist in this system
 BI_invalid_attribute - the attribute is not accessible in this system

Parameters id - component identifier as set in the system configuration file
 token - the token for attribute to be set
 index - for accessing indexed attributes and setups
 s - the new attribute string

 C int far pascal BI_set(char far*id, int token, int index, char far* s);

 Pascal function BI_set(id: Pchar;token: integer; index: integer;
 s: Pchar): integer;

 Visual Basic Function BI_set(ByVal id As String, ByVal token As Integer,
 ByVal index As Integer, ByVal s As String) As Integer

 Spectroradiometer Software Development Kit 37

BI_trace

Syntax BI_trace (trace)

Description This function toggles the dll tracer. When trace equals 1 the tracer will log dll
function calls in C:\trace.txt

Return value None

Parameters trace : 0 – tracer off
 1 – tracer on

 C void BI_trace (int trace);

 Pascal procedure BI_trace(trace: integer);

 Visual Basic Sub BI_use_group(ByVal trace As Integer)

BI_use_group

Syntax BI_use_group(group)

Description This function sets the active group.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters group - the number of the group to make active

 C int far pascal BI_use_group(int group);

 Pascal function BI_use_group(group : integer) : integer;

 Visual Basic Function BI_use_group(ByVal group As Integer) As Integer

BI_version

 Syntax BI_version(s)

 Description This function returns version information for the DLL.

 Return value none

 Parameters s is a pointer to a buffer that the version information is to be copied to. The
version string will be no longer than 80 characters.

 C void BI_version(char far *s);

 Pascal procedure BI_version(s : Pchar);

 Visual Basic Sub BI_version(ByVal s As String)

38 Bentham Instruments

BI_zero_calibration

Syntax BI_zero_calibration(start_wavelength, stop_wavelength)

Description This function performs ADC offset and system dark current measurements
for the active group. The DLL records the values and uses them when
calculating readings in BI_measurement. To ensure accurate readings
BI_zero_calibration should be called before BI_measurement is used; once
before a wavelength range scan is normally sufficient.

 The information is stored with the active group so it is possible to zero-
calibrate each group and then swap between them at will; the DLL will always
use the correct zero-calibration data.

Return value The return value indicates the result of the call:
 BI_OK - success
 BI_error - failure

Parameters start_wavelength – wavelength to zero calibrate from.
 stop_wavelength – wavelength to zero calibrate to.

 C int far pascal BI_zero_calibration(double start_wavelength,
 double stop_wavelength);

 Pascal function BI_zero_calibration(start_wavelength : double;
 stop_wavelength : double) : integer;

 Visual Basic Function BI_zero_calibration(ByVal start_wavelength As Double,
 ByVal stop_wavelength As Double) As Integer

 Spectroradiometer Software Development Kit 39

2.5. HARDWARE ATTRIBUTE TOKENS

Hardware attributes can be classified as one of two types:

i) Structural attributes - these describe what components the system is built from and
how they interact. These attributes can be considered as hardwired.

ii) Component attributes - these describe how the components are set-up and used,
which may differ from run to run.

The system configuration file passed to BI_build_system_model contains structural attributes.
It describes the hardware system in terms of its components and how they relate to each
other. Examples of this type of information are:
 there is a 228A ADC at address 29 on the IEEE bus,
 there is a TM300 monochromator that contains a filter wheel controlled by card 2 in
 the MSD.

The file created by BI_save_setup consists of component attributes. It describes in detail
exactly how each component is configured. Examples of this type of information are:
 the ADC is sampled 10 times per measurement,
 the recommended delay time after changing filter wheel position is 2 seconds.

Once BI_build_system_model has been called the structural attributes cannot be changed.
However, users may wish to alter component attributes such as ADC samples per reading or
delay times. Component attributes are retrieved and set using the BI_get and BI_set
functions.

To access an attribute with BI_get or BI_set the component id, attribute, and in some cases
attribute index, must be specified. The component id is the same as that set in the system
configuration file. The attribute token is a constant that the DLL recognises as referring to a
particular attribute. The SDK includes a set of attribute token definition files for various
languages. These give identifiers to the attribute tokens which should be used instead of the
actual token values. This makes calls to BI_get and BI_set more readable and will prevent
problems with future versions of the DLL where the token values may change. Table 2 gives
a list of which languages are currently supported and how the attribute token definition files
should be used.

The attribute index is used where an attribute token may refer to one of several values. For
example, consider a 6 position filter wheel. The following function call will retrieve the filter
value at position 3:
BI_get("filter_wheel", the identifier for the filter wheel

 FWheelFilter, attribute token for a filter value

 3, attribute index for position 3

 filter_value) attribute value returned in this variable

Language Attribute Token Def File Use

Table 2: Attribute Token Definition Files

If there is not a token definition file for a particular programming language the file dlltoken.txt
contains a no-frills list of identifiers and values that can be converted to any language. This
file may be copied as required.

C++ dlltoken.h #include "dlltoken.h" in any
source file that uses BI_get or
BI_set

Pascal dlltoken.pas Include dlltoken.pas in any
source file that uses BI_get or
BI_set

Visual
Basic

dlltoken.bas Add dlltoken.bas in any project
that uses BI_get or BI_set

40 Bentham Instruments

The following is a list of all of the attribute tokens in the DLL. There is a brief description of
each attribute including how it is indexed (if it is a multi-valued attribute), what values it can
take and what it defaults to. The attributes are grouped by component.

Monochromator Attributes

MonochromatorCurrentDialReading current dial reading (M300/DM150) 0
MonochromatorCurrentWL current wavelength (nm) undefined
MonochromatorParkDialReading park position (M300/DM150) 0
MonochromatorCurrentGrating current grating (1-3) undefined
MonochromatorScanDirection scan direction 1
MonochromatorPark repark monochromator Undefined
MonochromatorSelfPark legacy attribute (DM150) 1
MonochromatorModeSwitchNum double – single sam index -1
MonochromatorModeSwitchState sam state 0
MonochromatorCanModeSwitch boolean 1
GratingA alpha (TM/DTM30) 1
Gratingd ruling density d (TM/DTM300) 0
GratingWLMax grating maximum (TM/DTM300) from d

GratingWLMin grating minimum (TM/DTM300) from d

GratingX grating constant 1 (HR600) undefined
GratingX1 grating constant 2 (HR600) undefined
GratingX2 grating constant 3 (HR600) undefined
GratingZ zord (TM/DTM300) 0
ChangerZ changer zord

Filter Wheel Attributes

FWheelCurrentPosition current filter position undefined
FWheelFilter filter value 0
FWheelPositions number of filter positions undefined

SOB Attributes

SOBInitialState state after BI_initialise 0
SOBState current state undefined

TLS Attributes

TLSCurrentPosition current light source 1
TLSPOS light source to switch to 0
TLSPositionsCommand switch light source undefined
TLSSelectWavelength select wavelength for the TLS undefined
TLSWL wavelength to switch light source at 0

262 Attributes

biRelay relay status 0
biCurrentRelay current relay status undefined

SAM Attributes

SAMInitialState state after BI_initialise 0
SAMCurrentState SAMs current state undefined
SAMState state at SAMSwitchWl(n) 0
SAMSwitchWL state change wavelength (nm) undefined
SAMDeflectName name for deflected SAM state Deflect
SAMNoDeflectName Name for undeflected SAM state No Deflect

 Spectroradiometer Software Development Kit 41

Stepper SAM Attributes

SSEnergisedSteps steps to energised position undefined
SSRelaxedSteps steps to relaxed position undefined
SSMaxSteps maximum steps undefined
SSSpeed motor speed undefined
SSMoveCurrent motor current on move undefined
SSIdleCurrent motor current when idle undefined

MVSS Attributes

MVSSConstantBandwidth current constant Bandwidth (nm) undefined
MVSSConstantwidth current constant width (mm) 0..10
MVSSCurrentWidth current width of the mvss (mm) undefined
MVSSPosition set slit position in monochromator

(‘entrance’, ‘exit’ or ‘middle’)
‘entrance’

MVSSSetWidth move the slit to the specified width (mm) 0..10
MVSSSlitMode the current slit drive mode 0 / 1
MVSSSwitchWL state change wavelength (nm) undefined
MVSSWidth width at specified state 0..10

ADC Attributes

ADCAdaptiveIntegration the adaptive integration mode 0/1
ADCSamplesPerReading number of samples integrated for one

reading
10

ADCSamplePeriod sample period in milliseconds 100
ADCVolts take a reading undefined
ADCAuxVolts read from a 487 Aux Input undefined
ADCAuxOffset get/set the Aux Offset 0
ADCAuxInput select the 487 Aux Input undefined
ADCTimeConstant for use with Stanford lock-in undefined
ADCXYThetaReading for use with Stanford lock-in undefined

General Amplifier Attributes

AmpChannel input channel (225, 267, 277 only) 1
AmpCurrentChannel current channel (225, 267, 277 only) undefined
AmpCurrentRange current range undefined
AmpGain gain value
AmpMinRange minimum range 1
AmpMaxRange maximum range 7 (225)

6 (others)
AmpOverload overload flag 0
AmpOverrideWl set group readings to 1 from this

wavelength (nm)

AmpStartRange starting range (265, 267, 277 only) 1
AmpUseSetup (nm) to switch to set-up (225, 267, 277

only)

0

AmpCurrentSetup get/set current setup being used 0

225 Attributes

A225fMode frequency mode 1
A225PhaseQuadrant phase quadrant 1
A225PhaseVariable phase variable 0
A225TargetRange target range 1
A225TimeConstant time constant 1

42 Bentham Instruments

Motorised Stage Attributes

MotorPosition get/set motor position 0
MotorStop tell motor to stop moving undefined

EBox Monitor Attributes

EBoxReadHV Read High Voltage Undefined
EBoxReadTemp Read Temperature Undefined
EBoxReadHVRaw Read High Voltage without converting Undefined
EBoxReadTempRaw Read Temperature without converting Undefined
EBoxWait Delay between HV or Temp readings 5000
EBoxRepeats Repeats of HV and Temp 1
EBoxCountsAtTargetTemp ADC reading at target temp 11990
EBoxGradientTemp Gradient of ADC counts vs Temp 1288.19
EBoxTargetTemp Target Temperature 23
EBoxCountsAtTargetHV ADC reading at target HV 10178
EBoxGradientHV Gradient of ADC counts vs HV -216.76
EBoxTargetHV Target High Voltage 750

Camera Attributes

CameraIntegrationTime Get/Set Integration Time Undefined
CameraBeta Get/Set Camera Beta 0
CameraPhi Get/Set Camera Phi 0

Miscellaneous Attributes

biSettleDelay recommended settle delay (ms) after
operation

biMin minimum allowable position (Motor) -1
biMax maximum allowable position (Motor) -1
biParkPos position after parking (M300, DM150,

Motor only)
-1

biInput input channel indexed by setup (262,
265, 267, 277)

biCurrentInput current input channel (262, 265, 267,
277)

biMoveWithWavelength change component state with
wavelength

biHasSetupWindow ask whether setup window exists for
component

biHasAdvancedWindow
biDescriptor returns product description string (eg

DTM300)

biProductName returns product name (eg DTM300
Monochromator)

biParkOffset park offset

System attributes

Sys225_277Input which 225 input the 277 output goes to 1
SysStopCount stop-count value for AC zero-calibration 1.0
SysDarkIIntegrationTime Integration time to be used when

calculating dark levels

Bentham Hardware Types

BenInterface hardware_type token for interfaces
BenSAM hardware_type token for SAMs

 Spectroradiometer Software Development Kit 43

BenSlit hardware_type token for MVSSs
BenFilterWheel hardware_type token for filter wheels
BenADC hardware_type token for ADCs
BenPREAMP hardware_type token for preamplifiers
BenACAMP hardware_type token for ac amplifiers
BenDCAMP hardware_type token for dc amplifiers
BenPostAMP hardware_type token for post amplifiers
BenRelayUnit hardware_type token for relay units
BenMono hardware_type token for monochromators
BenAnonDevice hardware_type token for anonymous devices
BenCamera hardware_type token for camera devices
BenDiodeArray hardware_type token for diode array devices
BenORM hardware_type token for ORM400 devices
BenEBoxMonitor hardware_type token for EBoxMonitor device
BenUnknown hardware_type token for unknown devices

The use of attribute tokens in controlling components is explained in detail further on.

44 Bentham Instruments

2.6. DLL ERROR CODES

Functions in the DLL return error codes to indicate their success or failure and the cause of
any failure. These are defined as follows:

BI_OK - function call succeeded

BI_error - function call failed

BI_invalid_token - the function was passed an invalid attribute token

BI_invalid_component the function was passed a component identifier that
 does not exist

BI_invalid_attribute - the function was passed an attribute token referring to an
 attribute that does not exist or is inaccessible

Hardware operation functions return either BI_OK or BI_error. When a hardware operation
function returns BI_error, BI_report_error can be used to return a hardware error code that
describes exactly what caused the error. The hardware error codes are as follows:

BI_no_error - no error to report

BI_PMC_timeout - PMC not responding

BI_MSD_timeout - MSD not responding

BI_MSC_timeout - MSC1 not responding

BI_MAC_timeout - MAC not responding

BI_MAC_invalid_cmd - error in communication with MAC

BI_225_dead 225 not responding

BI_265_dead - 265 not responding

BI_267_dead - 267 not responding

BI_277_dead - 277 not responding

BI_262_dead - 262 not responding

BI_ADC_read_error - ADC not responding

BI_ADC_invalid_reading could not obtain valid ADC reading

BI_AMP_invalid_channel invalid amplifier channel

BI_AMP_invalid_wavelength invalid amplifier wavelength

BI_SAM_invalid_wavelength invalid SAM wavelength

BI_MVSS_invalid_width invalid MVSS wavelength

BI_turret_invalid_wavelength -attempt to send monochromator beyond wavelength range

BI_turret_incorrect_pos -error in communication with MAC

Calling BI_report_error clears the error code, i.e. subsequent calls will return BI_no_error until
another hardware error occurs.

The SDK includes error code definition files. These should be used in applications that need
to know what the return values of DLL functions signify. Languages currently supported are:

Language Error Code Definition File Use

Table 3: Error Code Definition Files

If there is not an error code definition file for a particular programming language the file
dllerror.txt contains a no-frills list of identifiers and values that can be converted to any
language. This file may be copied as required

C dllerror.h Use #include "dllerror.h" in any
source file that uses error codes

Pascal dllerror.pas Include dllerror.pas in any source
file that needs to know the error
codes

Visual
Basic

dllerror.bas Add in any project that uses error
codes

 Spectroradiometer Software Development Kit 45

2.7. CONTROLLING HARDWARE VIA THE DLL

This section describes how attribute tokens are used to control the behaviour of the
components in a system.

2.7.1. M300/Mc300 and DM150/DMc150 Monochromators

The DLL is designed to allow monochromator control at the highest level; the function
BI_select_wavelength tells the DLL which wavelength the monochromator should be at and
the DLL does the rest, co-ordinating the operation of the gratings and any filter wheels or
SAMs. Before this can happen the DLL needs to know exactly how the monochromator is set
up.

MonochromatorCurrentDialReading: the current dial reading. For non-parking M300 and

DM150 monochromators this must be set before any calls to BI_select_wavelength. Valid
values are 0..999.99.

MonochromatorCurrentWavelength: the wavelength (nm) that the monochromator is at;
read-only.

MonochromatorScanDirection: controls when anti-backlash precautions are taken. A value
of 1 indicates that all wavelengths should be approached from a shorter wavelength, while
0 indicates that all wavelengths should be approached from a longer wavelength. If the
DLL ever needs to approach a wavelength in the 'wrong' direction it will first overshoot the
required position and then go to it from the other side, preventing any backlash error.
Therefore if an application intends to scan from short to long wavelengths (e.g. UV to IR),
MonochromatorScanDirection should be set to 1. If an application intends to scan from
long to short wavelengths (e.g. IR to UV), MonochromatorScanDirection should be set to
0. The default value is 1 (increasing wavelength).

Gratingd: the line density d (lines mm-1) of the grating.

GratingWLMax: the maximum wavelength (nm) that the grating should be used for. Setting
this to 0 causes the DLL to use a default value chosen by the ruling density.

GratingWLMin: the minimum wavelength (nm) that the grating should be used for. Setting
this to 0 causes the DLL to use a default value chosen by the ruling density.

biSettleDelay: the recommended settle delay after selecting a new wavelength.
BI_select_wavelength will return this value if the monochromator has changed position
and it is the longest delay time triggered.

MonochromatorPark: called with any value, the monochromator will be reparked.

MonochromatorSelfPark: legacy token for telling the benhw whether a Dial Reading is
entered by the user when the monochromator park is called, or whether the
monochromator parks itself.

2.7.2. TM300/TMc300, DTM300/DTMc300 and TTM300 Monochromators

As with the M300 and DM150 monochromators, the DLL needs to know the set-up for TM300
and DTM300 monochromators. For a TM300 gratings are indexed as 1, 2 or 3. For a
DTM300 gratings on turret 1 are indexed as 11, 12 or 13, and on turret 2 as 21, 22 or 23.

MonochromatorCurrentWavelength: the wavelength (nm) that the monochromator is at.
This attribute is read-only. Attempting to set it will not operate the monochromator; use
the DLL function BI_select_wavelength.

MonochromatorScanDirection: controls when anti-backlash precautions are taken. A value
of 1 indicates that all wavelengths should be approached from a shorter wavelength, while

46 Bentham Instruments

0 indicates that all wavelengths should be approached from a longer wavelength. If the
DLL ever needs to approach a wavelength in the 'wrong' direction it will first overshoot the
required position and then go to it from the other side, preventing any backlash error.
Therefore if an application intends to scan from short to long wavelengths (e.g. UV to IR),
MonochromatorScanDirection should be set to 1. If an application intends to scan from
long to short wavelengths (e.g. IR to UV), MonochromatorScanDirection should be set to
0. The default value is 1 (increasing wavelength).

GratingA: the alpha value for a grating.

Gratingd: the line density d (lines mm-1) for a grating.

GratingWLMax: the maximum wavelength (nm) that the grating should be used for.

GratingWLMin: the minimum wavelength (nm) that the grating should be used for.

GratingZ: the zero order (zord) value for a grating.

biSettleDelay: the recommended settle delay after selecting a new wavelength.
BI_select_wavelength will return this value if the monochromator has changed position
and it is the longest delay time triggered.

2.7.3. Filter Wheel

Filter wheels may have 6, 8, 10 or 12 positions; 6 is standard. The number of positions is
fixed in the system configuration file. Each position can be assigned a filter value. If the filter
wheel is attached to a monochromator then a call to BI_select_wavelength will send the filter
wheel to the position with the highest filter value that is less than or equal to the specified
wavelength.

The last position is always used as the shutter position, but this may also be assigned a filter
value. BI_close_shutter will send the filter wheel to this position. Positions with no filters
should have a filter value of 0 (default). The filter values do not have to be assigned in any
particular order, but normal practice is to start with the lowest filter and work up.

FWheelCurrentPosition: the current filter position. This must be set for non-parking M300
and DM150 systems before calling BI_zero_calibration, BI_select_wavelength or
BI_close_shutter. Read only for MAC and MSD controlled monochromators

FWheelFilter: filter value, indexed by position (1..number of positions). This value is used to
select a filter when BI_select_wavelength is called. When there is no filter at position n
FWheelFilter(n) should be 0 (default).

FWheelPositions: specifies the number of filter positions. The last (highest numbered)
position is always used as the shutter. Read only.

biSettleDelay: the recommended settle delay after a change of filter position.
BI_select_wavelength will return this value if the filter wheel has been moved and it is the
longest delay time triggered.

2.7.4. SAM

SAMs can be in one of two defined states, energised or relaxed. SAMs have an initial state
that they go to when BI_initialise is called and also maintain a list of up to 10 records that
specify what state the SAM should be in at a given wavelength. If a SAM is attached to a
monochromator then a call to BI_select_wavelength will cause the SAM to go to the state
corresponding to the record with the highest wavelength that is less than or equal to the
wavelength specified.

 Spectroradiometer Software Development Kit 47

SAMInitialState: the state of the SAM after calling BI_initialise. 0 indicates relaxed and 1 is
energised. The default is 0 (relaxed).

SAMSwitchWl, SAMState: used to access the SAM's wavelength-state records. Both
attributes are indexed by the setup number (1..10). SAMSwitchWl refers to the
wavelength and SAMState to the corresponding state.

SAMDeflectName, SAMNoDeflectName: used to read/write the SAM state names. For
example the state may be given the name of the detector the light will fall upon.

biSettleDelay: the recommended settle delay after the SAM has changed state.
BI_select_wavelength will return this value if the SAM has changed state and it is the
longest delay time triggered.

2.7.5. TLS

TLSs can be in one of three positions. TLSs have an initial position that they go to when
BI_initialise is called and also maintain a list of up to 10 records that specify what position the
TLS should be in at a given wavelength. If a TLS is attached to a monochromator then a call
to BI_select_wavelength will cause the TLS to go to the position corresponding to the record
with the highest wavelength that is less than or equal to the wavelength specified.

TLSCurrentPositon: the position that the TLS is currently in (1..3).

TLSWl, TLSPOS: used to access the TLS's wavelength-position records. Both attributes are
indexed by the setup number (1..10). TLSWl refers to the wavelength and TLSPOS to the
corresponding position.

biSettleDelay: the recommended settle delay after the TLS has changed state.
BI_select_wavelength will return this value if the TLS has changed state and it is the
longest delay time triggered.

2.7.6. MVSS

The width of an MVSS can be controlled be controlled in 2 ways. The first is in a constant
Bandwidth more and the second in constant width mode. In constant Bandwidth mode the
desired bandwidth is set and the dll controls the slit to give the bandwidth required for the
current grating. Calls to BI_Select_Wavelength that result in a grating change will
automatically change the slits. In Constant Width mode the Slits are set to a required width in
mm. The commands are:

MVSSConstantBandwidth: this allows for the bandwidth to be set in nm.

MVSSConstantwidth : this allows for the width to be set in mm

MVSSSlitMode : this set which mode the slits should operate in (mm = 0) (nm = 1)

2.7.7. SOB

SOBs can be in one of two defined states, energised or relaxed. SOBs have an initial state
that they go to when BI_initialise is called.

SOBInitialState: the state of the SOB after calling BI_initialise. 0 is relaxed and 1 is
energised. The default is 0.

SOBState: the current state of the SOB. 0 is relaxed and 1 is energised.

48 Bentham Instruments

biSettleDelay: the recommended settle delay after the SOB has changed state.

2.7.8. 228, 228A, 485 and 487 ADCs

The number of samples averaged to obtain a reading is sets the integration time. For a 228A
that produces a new sample every 100ms setting 10 samples per reading means that each
reading takes 1s. Increasing the integration time increases the signal-to-noise ratio. Adaptive
integration makes use of this by increasing the integration time as the signal weakens.

ADCSamplesPerReading: how many ADC samples should be averaged per measurement.
Indexed 0-6, where 0 is used for non-adaptive integration and 1-6 corresponds to current
amplifier range (minimum-maximum gain, i.e. strong-weak signal).

ADCAdaptiveIntegration: 0 and 1 turn adaptive integration off and on respectively.

ADCSamplePeriod: the number of milliseconds between samples. Read only.

ADCVolts: this will return a reading from the ADC in volts. One of few tokens which talk
directly to hardware.

ADCAuxInput: Used to set a 487 to the Auxiliary Input.

ADCAuxOffset: by default, no offset is set for the Aux Input so this must be manually taken
and set.

ADCAuxVolts: this will take a reading of the 487 Auxiliary Input and return a value in volts.

2.7.9. 225, 265, 267, 277, 485,487 and 477 Amplifiers

The 225, 267, 277, 485,487 and 477 amplifiers can all be pre-programmed with multiple set-
ups. The 225 and 485 have four set-ups, corresponding to four different detectors, and the
267, 277, 487 and 477 have two set-ups.

The 267/277/487/477 set-ups consist of minimum, maximum and start ranges, input channel
and the wavelength from which the set-up should be used. With the 267 and 277 the set-ups
are mainly used to change channel at a given wavelength.

The 225 and 485 set-ups consists of minimum, maximum and target ranges, time constant,
phase quadrant and variable, frequency mode, input channel and the wavelength from which
the set-up should be used. With the 225 and 485 each set-up corresponds to a different
detector, and switching between set-ups provides a quick and easy way of configuring the 225
and 485 for all of the different detectors that may be encountered in a system.
When an amplifier is in the active group a call to BI_initialise will cause the amplifier to
configure itself using the current setup. In addition BI_select_wavelength will cause the
amplifier to use the set-up with the highest wavelength that is less than or equal to the
wavelength specified.. Amplifier settings may also be 'manually' changed via BI_set. This
clears AmpCurrentSetup.

AmpGain: the gain for a specific range. Indexed by the range number (1-6 for 265, 267 and
277, 1-7 for 225), where 1 is the least sensitive range. The default values for ranges from
1 up are:

 265: 104, 103, 102, 10, 1, 10-1
 267: 104, 103, 102, 10, 1, 10-1
 277: 107, 106, 105, 104, 103, 102
 225: 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8

These values are used by the DLL when calculating results for BI_measurement and
should not normally have to be altered.

 Spectroradiometer Software Development Kit 49

AmpChannel: input channel for a specified set-up, indexed by the set-up number. Legal
values are 1 and 2; the default is 1.

AmpMinimumRange: minimum range to be used for a specified set-up, indexed by the set-
up number. Legal values are 1..number of ranges, where 1 is the least sensitive range.
The default is 1. Setting this to the same value as AmpMaximumRange prevents auto-
ranging.

AmpMaximumRange: maximum range to be used for a specified set-up, indexed by the set-
up number. Legal values are 1..number of ranges, where 1 is the least sensitive range.
The default is 1. Setting this to the same value as AmpMinimumRange prevents auto-
ranging.

AmpStartRange: (265, 267 and 277 only) the start range to be used for a specified set-up,
indexed by the set-up number. BI_initialise sets the amplifier to the start range for the
current set-up. Legal values are 1..number of ranges, where 1 is the least sensitive
range. The default is 1.

AmpCurrentSetup: (267, 277 and 225 only) the current set-up. Legal values are 1 and 2 for
267 and 277, 1..4 for 225. This attribute is set to 0 if AmpCurrentRange or
AmpCurrentChannel are accessed using BI_set.

AmpCurrentRange: the current range. Legal values are 1..6 for the 265/267/277, 1..7 for the
225.

AmpCurrentChannel specifies the current input channel. Legal values are 1 and 2.

AmpUseSetup: (267, 277, 225 only) the wavelength from which the set-up for detector n
should be used, indexed by set-up number. If more than one set-up is specified for a
particular wavelength then the one with the lowest value of n is used. The default is 0
(0nm).

biSettleDelay: the recommended settle delay after the amplifier has changed one of its
settings. BI_select_wavelength will return this value if the amplifier has changed range or
set-up and it is the longest delay time triggered.

The following apply only to the 225:

A225TargetRange: the target range to be used for a specified set-up, indexed by the set-up
number. Legal values are 1..7, where 1 is the least sensitive range. The default is 1.

A225PhaseQuadrant: the phase quadrant to be used for a specified set-up, indexed by the
set-up number. Legal values are 1..4, corresponding to phase quadrants of 0°, 90°, 180°
and 270°. The default is 1 (0°).

A225PhaseVariable: the phase variable to be used for a specified set-up, indexed by the set-
up number. The phase variable is a real number in the range 0..102.4. The default is 0.

A225TimeConstant: the time constant to be used for a specified set-up, indexed by the set-
up number. Legal values are 1..7, corresponding to time constants of 10ms, 30ms, 0.1s,
0.3s, 1s, 3s and 10s. The default is 1 (10ms).

A225fMode: the frequency mode to be used for a specified set-up, indexed by the set-up
number. Legal values are 1 and 2, corresponding to frequency modes f and 2f. The
default is 1 (f).

50 Bentham Instruments

2.7.10. Motorised Stages

A Motorised Stage is simply a single motor, often used for positioning in goniometer systems.

MotorPosition: used to either get the current position, or tell the motor to move to a new
position. Value given is in steps.

MotorStop: when MotorPosition attribute is set and passed an index of 1, the motor is not
polled to work out when the motor has finished moving, giving the user an opportunity

 to call MotorStop if the motor needs to stop prematurely.

2.7.11. EBox Monitor

EboxReadHv: The High Voltage value, converted to volts using the gradient HV, target HV
and counts at Target HV attributes.

EboxReadTemp: The Temperature value, converted to degrees celsius using the gradient
temp, target temp and counts at target temp attributes.

EboxReadHvRaw: A single unconverted HV reading in ADC counts.

EboxReadTempRaw: A single unconverted temperature reading in ADC counts.

EboxWait: The waiting period between repeated readings of the HV or temperature values.

EboxRepeats: The number of repeats to perform for HV and temperature readings.

EboxCountsAtTargetTemp: The ADC counts at the given target temperature.

EboxGradientTemp: The gradient of the ADC counts vs temperature line.

EboxTargetTemp: The target temperature value in degrees celsius.

EboxCountsAtTargetHv: The ADC counts at the given target high voltage.

EboxGradientHv: The gradient of the ADC counts vs high voltage line.

EboxTargetHv: The target high voltage value in volts.

2.7.12. Camera Attributes

CameraAutoRange: Whether the Camera automatically changes integration time based on
the maximum value across the array during a measurement.

CameraIntegrationTime: The Camera integration time in milliseconds. Can be retrieved or
set as appropriate.

CameraBeta: The Camera Beta. This value is used along with Phi to calculate the wavelength
scale across the camera array.

CameraPhi: The Camera Phi. This value is used along with Beta to calculate the wavelength
scale across the camera array.

2.7.13. System Attributes

These attributes do not belong to any particular components, but control how the system
model takes measurements. In particular these attributes can be used to set-up adaptive
integration in DC systems. This can speed up measurements by allowing a short integration
time to be used for high signals, where the signal-to-noise ratio is already very large, and
longer integration times for low signals, where the signal-to-noise ratio needs to be improved.

SysStopCount: the autozero stop-count value for AC systems. When the zero offset is being
calculated for an AC system (BI_zero_calibration) the DLL samples the ADC until the
difference between two consecutive readings is equal to or less than this value. This
ensures that the system has settled. The default is 1.

SysDarkIIntegrationTime: the integration time (s) for the dark current reading in DC systems
(AC systems have no dark current). The default is 5 (5s); this is equivalent to 50 samples
with a 228A. Calculating the dark current is part of the zero calibration routine
(BI_zero_calibration).

Sys225_277Input: the input on the 225 that the output from the 277 is connected to. The
DLL uses this information to work out which combination of amplifiers is being used when
it calculates the result for BI_measurement. The default is 1 (i.e. 277 output to 225 input
1).

 Spectroradiometer Software Development Kit 51

2.8. USING THE DLL

This section gives hints and tips on using the DLL with different programming languages and
packages. As a rough guide, an application would normally call the DLL functions in the
following order:

DLL start-up and hardware initialisation
i) BI_build_system_model
ii) BI_load_setup
iii) BI_initialise
iv) BI_park
v) BI_get / BI_set (if required)

Measurement cycle
vi) BI_zero_calibration
vii) BI_select_wavelength (pause using returned settle delay)
viii) BI_automeasure
ix) return to step vii)

When a DLL is loaded into memory it does not have its own stack for function calls and local
variables but uses the client application's stack instead. Although the spectroradiometer
control DLL is not particularly stack-hungry this should be noted in case any stack errors do
occur. In normal use a client stack size of 8Kb has been found sufficient (depending on how
much the client uses, of course).
The serial port used by the DLL to communicate with the hardware is set in the system
configuration file (\hardware\system.cfg on the SDK disk). If you wish to use a different serial
port then you will need to edit the line

TAS016 comms port Comn

so that COMn refers to the port that you wish to use.

The file bendll.h contains declarations for the functions in the DLL. Any source files that use
functions from the DLL should include the following line:

#include "bendll.h"

The file dlltoken.h is the C/C++ token definition file. Any source files that use BI_get or BI_set
need to know about attribute tokens. This is done by making sure that they contain the line:

#include "dlltoken.h"

The file dllerror.h is the C/C++ error code definition file. Any source files that need to know
about error codes should contain the line:

#include "dllerror.h"

When creating a module definition file for your application a stack size of no less than 8Kb
should be specified otherwise you may encounter stack errors.
The same as for C (see previous section) but the macro __cplusplus must be defined to

ensure that the DLL functions are declared correctly (some compilers do this automatically).
The file dlltoken.pas is the Pascal attribute token definition file. This should be included in any
source files that use BI_set or BI_get (please refer to your compiler manual for instructions on
how to do this). The file dllerror.pas is the Pascal error code definition file. This should be
included in any files that need to know about error codes. Your compiler should also be told to
allocate at least 8Kb to the stack or you may encounter stack errors.
The Visual Basic attribute token definition file and error code definition file are dlltoken.bas
and dllerror.bas respectively; these need to be included in any project using the DLL. In
addition the file bendll.bas contains declarations of all of the DLL functions. Including this as a

52 Bentham Instruments

code module in a project ensures that the DLL functions are available to all other code and
form modules in the project.

 Spectroradiometer Software Development Kit 53

 3. TROUBLESHOOTING

3.1. WINDOWS ERRORS

These are error messages that Windows may report when it encounters a problem in running
an application using the spectroradiometer control DLL. They appear in dialogue boxes that
lock the system until dismissed.

File Error. Unable to find <name>.DLL.
Ensure that <name>.dll is correctly installed.

Error. Runtime error 202 at xxxx:xxxx.
This is a stack overflow error; for details on DLLs and the stack see Using The DLL.

Error. Runtime error 006 at xxxx:xxxx.
This error can occur when an application using the DLL has crashed and is re-
executed. When an application crashes Windows does not unload the DLL and it is
left in memory in an undefined state. Trying to then access the DLL again will almost
always fail, producing this error. If your application crashes the safest course of
action is to restart Windows; unfortunately there is no other way of removing the DLL
from memory.

3.2. HARDWARE CONTROL PROBLEMS

All of the DLL functions return BI_error and the hardware will not respond.
Ensure that you have called BI_build_system_model and that it has succeeded (i.e.
returned BI_OK).

BI_initialise keeps failing
Ensure that you have called BI_build_system_model and that it has succeeded (i.e.
returned BI_OK). For IEEE TM300/DTM300 systems ensure that all cable
connections are secure and that the hardware is switched on.

The monochromator does not go to the correct wavelength.
For TM300/DTM300 systems check:
You have called BI_initialise and it has succeeded,
You have called BI_park and it has succeeded,

The DLL has the correct z-ord and values for your monochromator.

For non-parking M300/DM150 systems check:
The DLL has the correct dial reading.

For self parking M300/DM150 systems check:
You have called BI_park and it has succeeded.

The filter wheel does not go to the correct position.
For TM300/DTM300 systems check:
You have called BI_initialise and it has succeeded,
You have called BI_park and it has succeeded.

For non-parking M300/DM150 systems check:
The DLL has the correct filter position.

For self-parking M300/DM150 systems check:
You have called BI_park and it has succeeded,

54 Bentham Instruments

For all systems check:
The DLL has the correct filter value for each position (any empty positions should be
set to a filter value of 0).

BI_autorange keeps failing.
BI_measurement will fail if there is a problem reading the ADC. This is often caused
by a communications error or a sudden change in the input to the ADC.
An intermittent communications error can be caused by a bad connection on the
IEEE bus; check the cable connections.
The ADC can experience a sudden change in input when the amplifier(s) is(are)
ranged or the filter wheel changes position. Ensure that all delays are long enough
and are actually used.

BI_zero_calibration keeps failing.
BI_zero_calibration will fail for the same reasons as BI_autorange; refer to the
previous answer.

BI_measurement keeps failing.
BI_measurement will fail for the same reasons as BI_autorange; refer to the previous
answer.

