
Photobiological Safety in Lighting Applications

Technical Support Manager, Bentham Instruments Limited

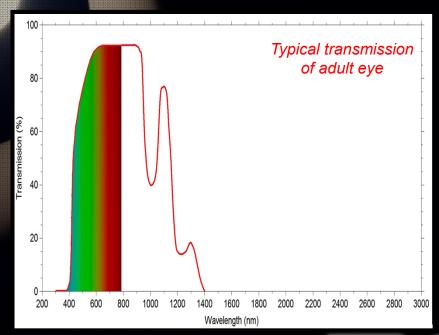
We are all familiar with the visual characteristics of lighting products

What other impact might these sources have?

Glare?

Photometric Flicker?

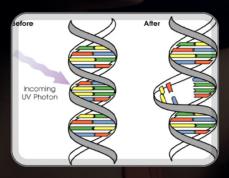
Circadian Disruption (or therapy)?


Photobiological Safety Hazards?

Photobiology: the study of the interaction of optical radiation with living organisms

Optical radiation strongly absorbed by tissue – skin, front surface of eye and retina potentially at risk

Band	Wavelength Range (nm)
UVC	100-280 (<2 cm, vacuum UV)
UVB	280-315
UVA	315-400
Visible	380-780
IRA	780-1400
IRB	1400-3000
IRC	301 10000



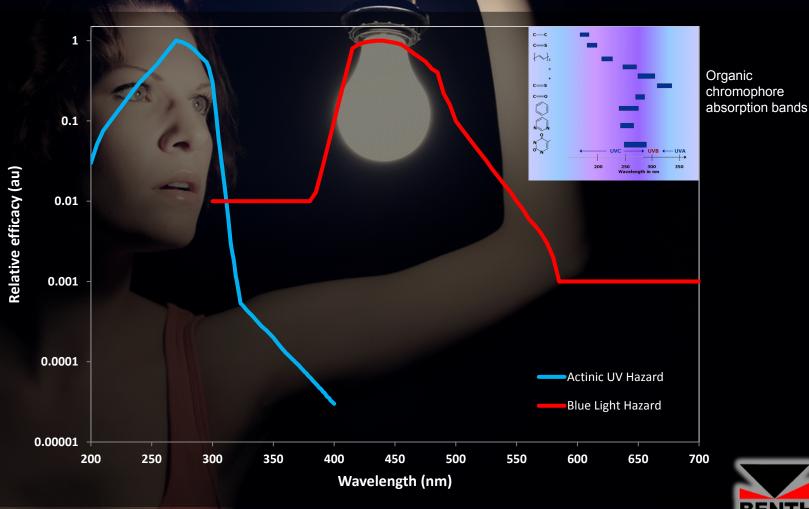
Light-Tissue Interactions

Thermal interaction

- Increase in local temperature => tissue damage
- · Power dependent
- · Wavelength independent

Photochemical interaction

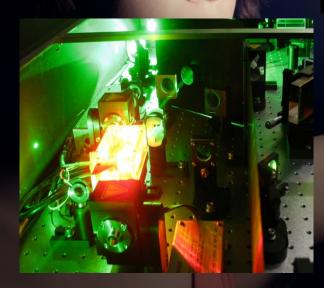
- · Breaking or re-organising chemical bonds in cellular molecules
- · Strongly wavelength dependent
- · Dose dependent according to Bunson-Roscoe law of reciprocity


Hazards identified by ICNIRP

Hazard	Wavelength	Bioeffect	
	Range (nm)	Eye	Skin
Actinic UV	200-400†	Cornea - Photokeratitis Conjunctiva - Conjunctivitis Lens — Cataractogenesis	Erythema Elastosis
Near UV	315-400	Lens – Cataractogenesis	
Blue Light	300-700†	Retina – Photoretinitis	
Retinal Thermal	380-1400†	Retina - Retinal burn	
IR Radiation Eye	780-3000	Cornea - Corneal burn	
Thermal Skin	380-3000		Skin burn

For each hazard, exposure limit values are published

Strong wavelength dependence of photochemical interactions



LED Photobiological Safety Standards

From 2006, IEC 62471

IEC62471 Series Standards

IEC62471-1:2006 "Photobiological Safety of Lamps and Lamp Systems"

IEC TR 62471-2:2009 "Guidance on manufacturing requirements relating to non-laser optical radiation safety"

EN62471:2008 harmonised to EU **Low Voltage Directive** and applied by **Artificial Optical Radiation Directive**

Scope of IEC 62471

Considers six hazards (and exposure limits) identified by ICNIRP

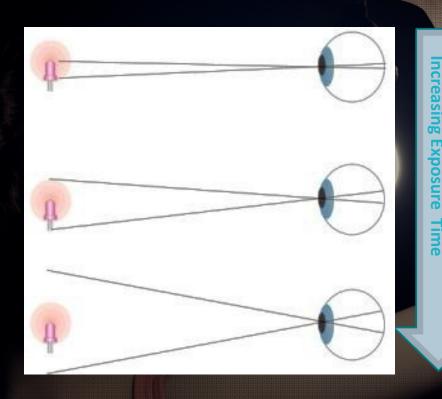
Electrically-powered incoherent broadband sources of optical radiation


Risk Group	Philosophical Basis
Exempt	No photobiological hazard
RG1	No photobiological hazard under normal behavioural limitation
RG2	Does not pose a hazard due to aversion response to bright light or thermal discomfort
RG3	Hazardous even for momentary exposure

Measurements Required

Measurement of Spectral Irradiance (200-3000nm)

 Evaluate hazards to the skin and front surfaces of eye


Measurement of Spectral Radiance (300-1400nm) • Evaluate hazards to the retina

Application	Evaluation distance
General lighting service	That at which source produces illuminance of 500 lux
All other sources	200mm from (apparent) source

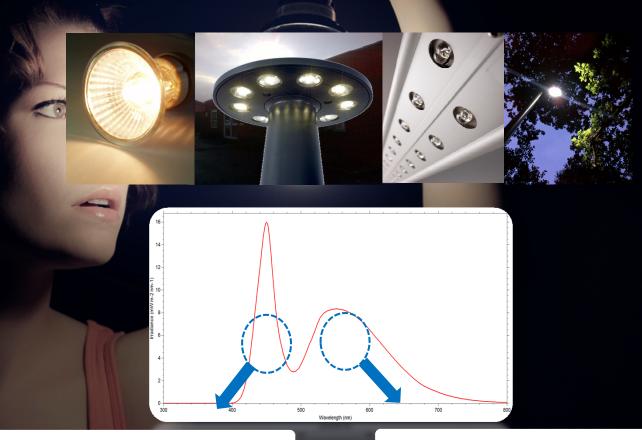
Time Dependence of Retinal Irradiance

Exposure Time (s)	Angle of Acceptance (mrad)
<0.25	1.7
0.25-10	11√(t/10)
10-100	11
100-10000	1.1√t
>10000	100

Physiological radiance accounts for light falling on a given area of the retina

A few of the myriad sources in scope...

Non-GLS Source Evaluation


Irradiance-based hazards up to RG3

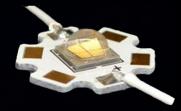
Blue light hazard up to RG2, retinal thermal hazard exempt except bare discharge lamp

GLS Evaluation at 500lx (Exempt)

Blue Light Irradiance
$$(Wm^{-2}) = \int_{300}^{700} E(\lambda).B(\lambda).d\lambda$$

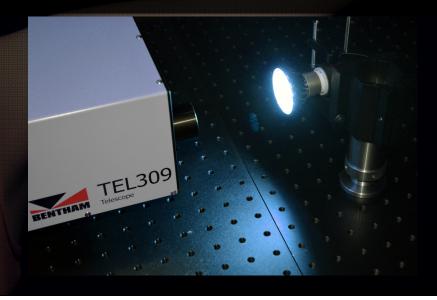
Illuminance (lux) = 683.
$$\int_{380}^{780} E(\lambda).V(\lambda).d\lambda$$

Potential Hazards Dependent on Lamp Type


UV hazard will be considered in implementing a specific effective irradiance limit (2 (6) mW.klm-1)

IR hazard will be considered by one incandescent lamp vertical standard

Blue light hazard will be dealt with in implementation of IEC TR 62778

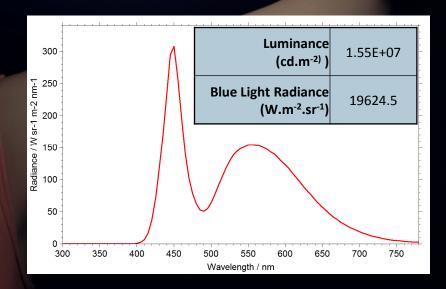


IEC TR 62778

Considers only blue light hazard of component lamps/ LEDs and finished product luminaires

Spectral radiance 300-780nm at 200mm in an 11mrad FOV

Where result yields Exempt/RG1 no further action required => Exempt / RG1 "Unlimited"

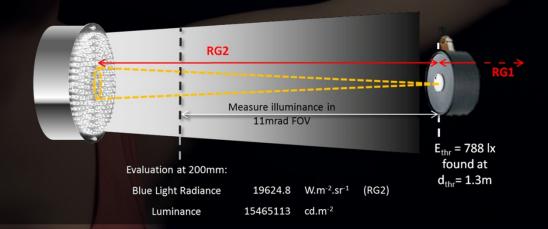


RG2 at 200mm, RG1 at Ethr

E_{thr} illuminance at which RG1 found

E_{thr} = luminance (cd.m⁻²)/ blue light radiance (W.m⁻².sr⁻¹))

For component LEDs, report E_{thr}



Finished Products, Report d_{thr}

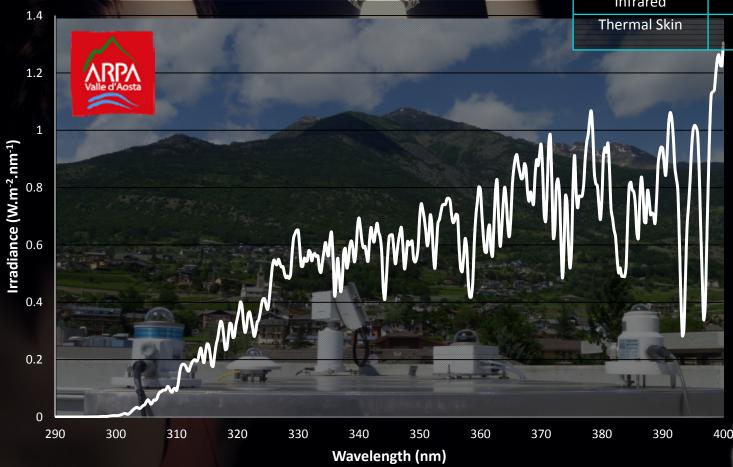
Determine d_{thr} using goniophotometric data and the inverse square law

Alternatively use illuminance meter

Source subtense >11mrad at d_{thr}, estimate conservative

Future Prospects

As lamp and luminaire standards are harmonised to the LVD, IEC 62471 will no longer be applied directly


Chronic low level exposure should be considered (age-related macular degeneration etc.)

Lamp technology is still on the move with the use of UV rather than blue LEDs and even laser diodes to pump phosphors- the impact of which is yet to be seen

A Little Local Context

Hazard	Risk Group
Actinic UV	RG3
Near UV	RG2
Blue Light	RG2
Retinal Thermal	RG2
Infrared	Exempt
Thermal Skin	Pass

BENTHAM www.bentham.co.uk

